

Main Product Characteristics

V _{(BR)DSS}	30V		
R _{DS(ON)}	27mΩ		
ID	5.6A		

SOT-23

Features and Benefits

- Advanced MOSFET process technology
- Ideal for high efficiency switched mode power supplies
- Low on-resistance with low gate charge
- Fast switching and reverse body recovery

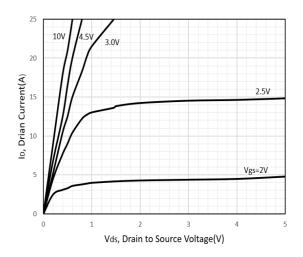
Description

The GSF3400 utilizes the latest techniques to achieve ultral high cell density and low on-resistance. These features make this device extremely efficient and reliable for use in battery protection, load switch, power management and a wide variety of other applications.

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Parameter	Symbol	Max.	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-to-Source Voltage	V _{GS}	± 12	V
Continuous Drain Current, @ Steady-State	I _D @ T _A = 25°C	5.6	А
Continuous Drain Current, @ Steady-State	I _D @ T _A = 70°C	4.5	А
Pulsed Drain Current ¹	I _{DM}	23	А
Power Dissipation	P _D @T _A = 25°C	1.2	W
Junction-to-Ambient (PCB Mounted, Steady-State) ²	R _{0JA}	104	°C/W
Operating Junction and Storage Temperature Range	T _J T _{STG}	-55 to + 150	°C

Electrical Characteristics (T_A=25°C unless otherwise specified)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} = 0V, I _D = 250μA	30	-	_	V	
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 30V, V _{GS} = 0V	-	-	1	μА	
		T _J = 125°C	-	-	50		
O-t- t- O 5	I _{GSS}	V _{GS} =12V	-	-	100	nA	
Gate-to-Source Forward Leakage		V _{GS} = -12V	-	-	-100		
Static Drain-to-Source On-	R _{DS (on)}	V _{GS} =10V, I _D = 5.6A	-	21	27		
Resistance		V _{GS} =4.5V, I _D = 5.0A	D = 5.0A 25 33		mΩ		
		V _{GS} =2.5V, I _D = 3.0A	-	33	51		
Gate Threshold Voltage	V _{GS (th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.65	0.9	1.5	V	
Input Capacitance	C_{iss}		-	535	-	pF	
Output Capacitance	C_{oss}	$V_{GS} = 0V V_{DS} = 15V f$ = 1MHz	-	130	-		
Reverse transfer capacitance	C_{rss}		-	36	-		
Total Gate Charge	Q_{g}		-	4.8	-	nC	
Gate-to-Source Charge	Q_gs	I _D =5.6A, V _{DS} =15V, V _{GS} =4.5V	-	1.2	-		
Gate-to-Drain("Miller") Charge	Q_{gd}		-	1.7	-		
Turn-on Delay Time	$t_{d(on)}$		-	12	-	nS	
Rise Time	tr	V_{GS} =4.5V, V_{DS} =15V, R_L =15 Ω ,	-	52	-		
Turn-Off Delay Time	$t_{d(off)}$	R_{GEN} =2.8Ω I_D =1A	-	17	-		
Fall Time	t _f		-	10	-		
Source-Drain Ratings and Charac	teristics						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Continuous Source Current (Body Diode)	ls	MOSFET symbol showing the integral reverse	-	-	5.6	А	
Pulsed Source Current (Body Diode)	I _{SM}	p-n junction diode.	-	-	23	Α	
Diode Forward Voltage	V_{SD}	I _S =5.6A, V _{GS} =0V	-	0.8	1.2	V	

Notes

- 1. Pulse test: Pulse Width≤300us, Duty cycle ≤2%.
- 2. Device mounted on FR-4 PCB, 1inch x 0.85inch x 0.062 inch.

Typical Electrical and Thermal Characteristic Curves

Figure 1. Typical Output Characteristics

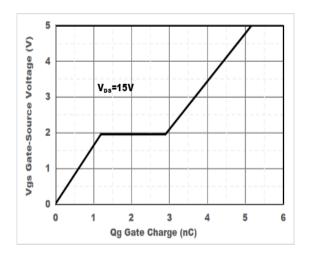


Figure 2. Transfer Characteristics

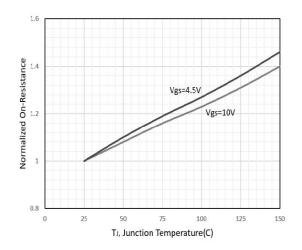


Figure 3. Gate Charge.

Figure 4. Normalized On-Resistance Vs. Junction Temperature

Typical Electrical and Thermal Characteristic Curves

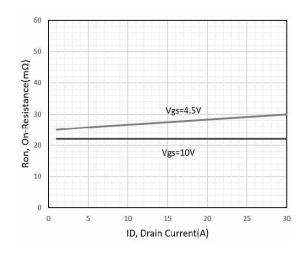


Figure 5. Drain-Source On-Resistance

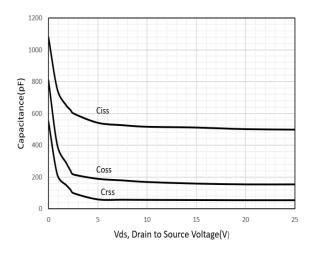


Figure 6. Typical Capacitance Vs. Drain-to-Source Voltage

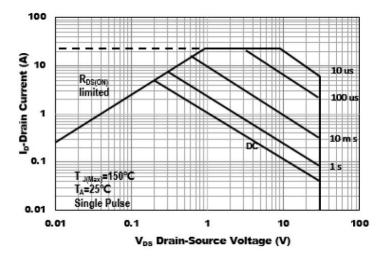


Figure 7. Safe Operation Area

Test Circuit & Waveform

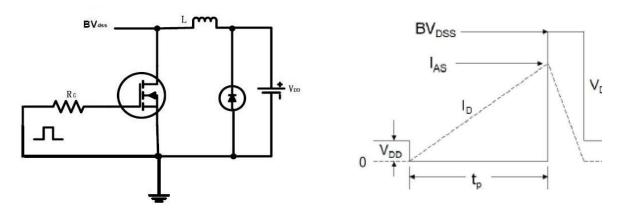


Figure 8. Unclamped Inductive Switching Test Circuit & Waveforms

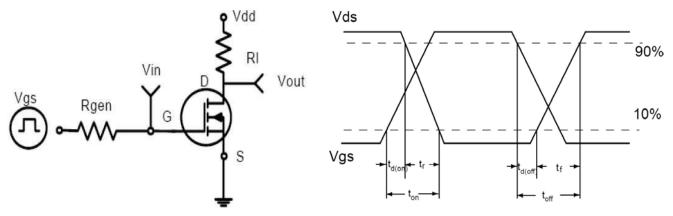
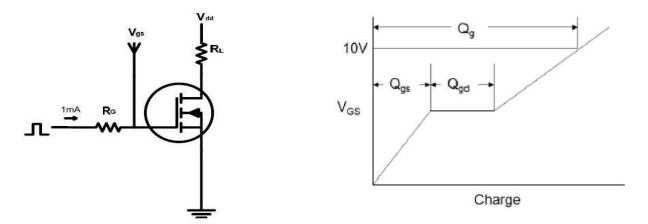
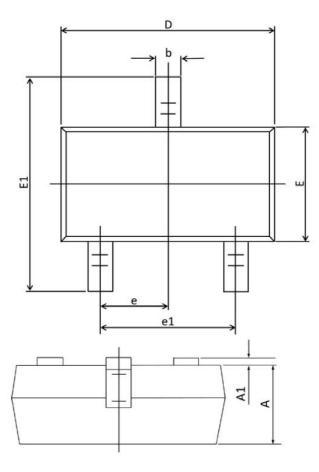
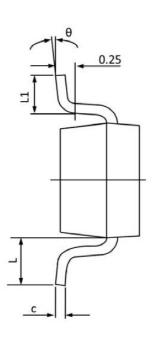


Figure 9. Resistive Switching Test Circuit & Waveforms


Figure 10. Gate Charge Test Circuit & Waveform

Package Outline Dimensions

Cymahal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.000	0.035	0.039	
A1	0.000	0.100	0.000	0.004	
b	0.300	0.500	0.012	0.020	
С	0.090	0.110	0.003	0.004	
D	2.800	3.000	0.110	0.118	
Е	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	1°	7°	1°	7°	